If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-19x-8=0
a = 6; b = -19; c = -8;
Δ = b2-4ac
Δ = -192-4·6·(-8)
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{553}}{2*6}=\frac{19-\sqrt{553}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{553}}{2*6}=\frac{19+\sqrt{553}}{12} $
| 4z-6z-8=10 | | 8+4m=9m-7 | | 17+(10+x)^2+(-17-x)=0 | | X²-3x-9=0 | | 2–g=1 | | a3=216 | | 2x-6+2x=-30 | | 2x/2x+10=1/2x+10+3/2 | | 3(2x-1)-5=3x-2 | | -x+8,2=6 | | 24=9+5+c | | 8=1/2(-2+5n) | | x/2x+10=1/2x+10+3/2 | | 3=6/g | | c3=1728 | | x²+x-17=0 | | 2x+7=8-7x | | 3x+2=7x-30 | | 2(z+2)=10 | | -16a=46 | | 5/2x+1=-17/3-3/2x | | (6/x²-9x+20)(5x-25/15)=0 | | x+3,6=0,5 | | 2x/14+(x-2)/14=2/14 | | 0,2x+0,006x^2=50 | | -33x^2+94x-65=0 | | 4(2x-1)=-10(x-5 | | -2/3x^2-4/3x+2=0 | | 3-3d=5(2-d) | | -3/17(4x-1=3 | | 2x/14+(x-2)/14=1/7 | | p+3/5=1 |